On Systems Generating Context Triggers Through Energy Harvesting

Vijay S. Rao, S. N. Akshay Uttama Nambi, R. Venkatesha Prasad, I. Niemegeers
Delft University of Technology, Delft, the Netherlands
{V.Rao, Akshay.Narashiman, R.R.VenkateshaPrasad, I.G.M.M.Niemegeers}@tudelft.nl

Abstract

Context-awareness is one of the building block of smart applications that constitutes smart spaces. With the emergence of Cyber Physical systems, it is now possible to create spaces that are truly adaptable and smart. In these spaces, contextual parameters are captured by many wireless sensor nodes. This collected data is processed to understand the context in real-time. Since a large number of sensors are deployed, processing all the data is a big task. Moreover, since the sensors are powered by batteries, they have a limited lifetime. Sensing only when there is a context-event can save energy as well as reduce data processing.

To make sensor nodes operate perpetually, ambient energy harvesters can be used. Typically the energy harvesting source of a sensor is related to the physical parameters that the sensor is measuring. We propose to exploit this property to develop a context-event triggering mechanism in this article. We also adapt the context-aware application framework for incorporating context-event triggers by harvesters. A Smart-M3 based architecture is also proposed. Through a real-world use-case, we illustrate significant energy savings and reduced data processing in our proposed approach.

Index Terms

Context Awareness, Energy Harvesting, Wireless Sensor Networks, Cyber Physical Spaces

I. INTRODUCTION

With rapid advancements in embedded systems and wireless technologies, the vision of Mark Weiser is becoming a reality. In his momentous work [1], he envisioned “ubiquitous computing” i.e., personal computers integrate seamlessly into a person’s environment and enriches his everyday life by automating many of his routine tasks and by providing information relevant to the context. Context is any information that can characterize the situation of a user or an entity in general [2]. Employing contextual information in applications to enrich user experience has led to powerful ideas such as Smart Spaces [3]. Smart space is a paradigm based on ubiquitous computing, where environments are impregnated with embedded devices to capture the context and adapt the ambiance around the user accordingly to improve his experience. Cyber Physical Systems enable connecting ‘things’ (physical objects) and control them [4]. Hence, smart spaces move on to become Smart Cyber Physical (SCy-Phy) spaces. SCy-Phy spaces not only adapt the environment and/or respond according to the context of the user, but also enhance safety and quality of experience for the user. Evidently, smart spaces are a subset of smart cyber physical spaces. An overview of SCy-Phy spaces is shown in Figure 1, where
both ICT (Information and Communications Technology) objects such as sensors and non-ICT objects such as appliances can be monitored and controlled based on the context. SCy-Phy spaces integrate smartness across various domains such as homes, offices, buildings, transportation and logistics, cities.

The core idea to SCy-Phy spaces\(^1\) is to gather various contextual information such as location of the user, user movements, temperature of the room, etc, and then act appropriately based on the derived context. The most popular approach to collect these data is by using Wireless Sensor Networks (WSNs). Nodes in WSNs are low-power, battery operated, tiny embedded devices that have a sensor(s) and a radio transceiver. Typical WSNs are ad hoc networks where, a multi-hop approach is used for communication between the nodes and a sink to conserve energy. The nodes report the sensor data periodically to the sink. The sink then processes the data received from all the nodes to determine the context and/or change in the situation.

This classical approach of periodic sampling has some problems viz, (1) the sensor nodes drain their battery quickly; and (2) sink needs to process huge amount of sensor data generated by all the nodes. Many research efforts have targeted energy conservation on sensor nodes and lifetime extension of the network. Recently, there has been tremendous growth in energy harvesting technologies targeting perennial lifetime for the WSNs [5], [6]. In energy harvesting WSNs (EH-WSNs)\(^2\), the nodes scavenge energy from ambient sources like light, heat, water flow, vibrations, etc. While harvesting alleviates the first problem of the classical approach to an extent, it does not solve the second one. To address the second problem, the sink should be notified only if a context

\(^1\)In this work, we confine the SCy-Phy spaces to indoor environments such as home or office.

\(^2\)We assume that the nodes run only on the harvested energies and do not have secondary energy sources like batteries.
changes i.e., a context-event triggering mechanism is the need of the hour.

In EH-WSNs, if a node begins to harvest energy, it indicates that there is a change in the environment. In many cases, the energy harvesting source for a node will be related to the physical parameter that the sensor is measuring. For instance, a light sensor should have a photo-voltaic harvester that harvests energy, which is directly proportional to the intensity of light. Therefore, in this article, we propose to exploit this property of energy harvesters to detect the change in the context. We, further, design a context-event triggering framework and architecture based on Smart-M3 [7] for SCy-Phy spaces. This article demonstrates the above concepts and the framework with a real-world use-case.

The remainder of this article is organized as follows: Section II, briefly describes context aware systems. In Section III, we describe context-event triggering mechanism through energy harvesting. A novel framework for context-event triggering system is discussed in Section IV. We demonstrate our proposal with a use-case in Section V along with energy savings compared to other approaches. In Section VI we describe the challenges to be addressed for a robust system. We conclude in Section VII.

II. CONTEXT AND CONTEXT AWARENESS IN SCy-PHY SPACES

The widely accepted definition of context is, “Context is any information that can be used to characterize the situation of an entity [2]. An entity can be a person, place or an object that is considered relevant to the interaction between the user and the application”. Since any information can be contextually relevant according to the definition, it is a huge task to process all data in real-time. Hence, to reduce this complexity, context sources\(^3\) are grouped into dimensions [8], which are then weighted to pick the most relevant sources. The major dimensions of context are:

- **Ambient dimension**: The set of sources that are in the proximity of the user. This also includes real time raw sensor data about the user and his ambiance. Examples include room temperature, user location, etc.
- **User & Social dimension**: The set of sources that characterize the user’s preferences. Here the user’s social graph members and their preferences may also play a role in determining the context. Examples include user’s shopping information, recommendations, etc.
- **Derived dimension**: The information is obtained from external sources namely World Wide Web (WWW), calendars, weather, traffic information, etc, and may play a role in identifying the current situation of the user.

Of the different dimensions, the ambient dimension plays the most significant role since it is close to the user and can capture user’s action and environment in indoor SCy-Phy spaces. In SCy-Phy spaces, a large number of sensors are deployed to capture the user and ambiance information.

A context aware system [9] determines why the situation is occurring based on the contextual information. The system can then either adapt the environment or react to the situation. For example, in an indoor SCy-Phy environment, the temperature of a room where the user is present can be adapted according to his preference. If he moves to another room, the context aware system reacts to this action by adjusting the temperature in the new location.

\(^3\)Any source that captures information about a user and can provide this information to the sink for deriving context is referred to as a context source.
therefore in the following section, propose a method that triggers an event of context change to aid in spotting

apparent that huge amount of data is gathered and processed, mostly because of periodic data collection. We,

architecture consists of three layers namely sensing, modeling and application layers. Each module in the

Finally, the context model is used by the applications to adapt and/or respond to the user’s situation. It is

A generalized framework for context aware systems [10] in SCy-Phy space is shown in Figure 2. The architecture consists of three layers namely sensing, modeling and application layers. Each module in the architecture is briefly explained below.

- **Context Providers** furnish data about the contextual parameters. These can be sensors, user preferences or external entities which provide data such as temperature, humidity, light, RFID, location, shopping preferences, social preferences, calendars, weather and traffic information, etc.

- **Context Interpreter** harmonizes the data given by heterogeneous context providers. This is required since, the data will be of diverse data types, formats and values.

- **Context Reasoner** infers the big picture from the context information. Context reasoner considers relevance and quality of the contextual information gathered. Reasoner employs inference and rule based mechanisms. Thus, context reasoners can derive new high-level contextual information by employing the rules based on the current context information. Context reasoners can use additional resources (like location, time, user information, etc.) for deriving this new high-level contextual information.

- **Context Modeler and Storage** is used to represent contextual information in a machine understandable format. Context information can be modeled using a variety of approaches such as key-value models, object oriented models, logic based models and ontology based models. In key-value pair model, the value of context information is provided to the application as an environment variable. In object oriented models, context is represented as an atomic value from a flat information model. Ontology based models support heterogeneity and interoperability in context representation. Ontology based context modeling has several advantages of being flexible, extendible, generic and supports easy querying and retrieval of data which are crucial for context aware systems.

Finally, the context model is used by the applications to adapt and/or respond to the user’s situation. It is apparent that huge amount of data is gathered and processed, mostly because of periodic data collection. We, therefore in the following section, propose a method that triggers an event of context change to aid in spotting
TABLE I: Characterization of energy sources [5]

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Harvesting Technology</th>
<th>Amount of Energy harvested</th>
<th>Example usage in indoor SCy-Phy space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun light</td>
<td>Solar (Photo-Voltaic) cells</td>
<td>100mW/cm² (direct sun)</td>
<td>Sensors near the windows</td>
</tr>
<tr>
<td>Ambient light</td>
<td>Solar (Photo-Voltaic) cells</td>
<td>100µW/cm² (illuminated office)</td>
<td>Sensors in the rooms</td>
</tr>
<tr>
<td>Wind</td>
<td>Anemometer</td>
<td>1200mWh/day (@5 m/s wind)</td>
<td>In AC ducts</td>
</tr>
<tr>
<td>Water</td>
<td>Water (hydro) turbines</td>
<td>1W/ltr</td>
<td>In kitchens, toilets and showers</td>
</tr>
<tr>
<td>Thermo-electric</td>
<td>Temperature gradient (Seebeck effect)</td>
<td>60µW/cm² (@40°C gradient)</td>
<td>In heaters and on human bodies</td>
</tr>
<tr>
<td>Vibrations</td>
<td>Piezoelectric</td>
<td>0.2mW/cm²</td>
<td>In wheelchairs, appliances like washing machines, refrigerators</td>
</tr>
<tr>
<td>Push buttons</td>
<td>Magnetic coils</td>
<td>50µJ/N</td>
<td>Wireless switches, remote controls</td>
</tr>
<tr>
<td>Shoe inserts</td>
<td>Microgenerators</td>
<td>300µW/cm³</td>
<td>In shoes</td>
</tr>
</tbody>
</table>

The moments only when data gathering should be done.

III. CONTEXT TRIGGERED SENSING

A. Energy Harvesting Wireless Sensor Networks

Of the context providers, WSNs play a crucial role [11]. The ambiance dimension of the context is typically determined by analyzing the periodic data from these sensors. Hence, a large number of sensors are deployed to monitor various parameters.

The sensors are usually powered by batteries and are expected to run for long periods of time. To conserve energy, several strategies such as data aggregation and event detection at node and network level are adopted as described in [12]. However, even with sophisticated energy conservation techniques in these sensors, their batteries burn out quickly. Frequent battery replacement is labor intensive in some cases; in many other situations, battery replacement is impractical due to harsh physical or deployment conditions. The other associated problems of batteries, such as, increased size for increased capacity, higher leakages, etc., make them unattractive.

A promising approach, for perpetual network operations, is to harvest energy from the ambient sources, such as light, radio frequency, thermal, wind, water, salinity gradients and motion/mechanical movements [5]. The sensor nodes are completely dependent on the harvested energy. The characteristics of nodes that use energy harvesting differ from those with the conventional power sources. Ambient energy sources do not provide constant power and the harvested energy from these sources varies drastically over location and time. The harvested energy, sometimes, is very low and sometimes in excess of the storage capacity of the nodes. Table I summarizes the sources and power that can be harvested from these sources.

While harvesting energy alleviates the problem of lifetime, it can also detect a change in context. This is described in the following section.
B. Context-event triggers through harvesters

We propose to use harvesters as context-event triggers since the energy harvesting source for a sensor will, most often, be related to the physical parameters that the sensor measures. Here the harvester behaves like a sensor. For example, a shoe insert measures the distance walked/run and thereby the calories burnt by the user. A shoe insert energy harvester gets triggered only when there is a user movement, and the total energy harvested is directly related to the calories burnt. Therefore, instead of periodically sensing for user activity even when he is stationary, the sensor can now only be activated when the harvester generates energy. At this point, context-event is triggered and notified to the sink.

Another example is that a luminosity measuring sensor will have a PV harvester. When there is change in light intensity, the energy generated by the PV harvester changes proportionally. This change can be used to trigger the context-event notification, and to initiate other sensors for further monitoring. Many such examples can be easily envisioned in the SCy-Phy spaces including smart homes, smart transportation, smart cities, advanced energy metering infrastructure [14] etc. Table II summarizes the possible contexts generated by different harvesters in indoor SCy-Phy spaces.

The harvester, therefore, can be used to derive initial high-level contextual information. Unlike the classical method of periodic sensing to detect context changes, now we can rely on harvesters to detect context changes and use sensors to precisely monitor all the changes occurring from then on. If need be, the sensors can operate on a low sensing frequency until a context change is detected. Consequently, all the sensor nodes deployed can save energy^4. Thus, energy harvesting sensor nodes not only support perpetual operation of nodes but also assist in deriving contextual information.

^4Energy saving is also required in EH-WSNs to mitigate the variability in harvested energy, and enable operation under low-energy conditions.

<table>
<thead>
<tr>
<th>Energy Harvester</th>
<th>Events detected</th>
<th>Contextual information derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-Voltaic (indoor)</td>
<td>Lights turned ON/OFF</td>
<td>Occupancy in the room; life sign</td>
</tr>
<tr>
<td>Hydro</td>
<td>User presence; usage of water</td>
<td>User location (in kitchen, shower etc.); water usage patterns and activities, advanced metering</td>
</tr>
<tr>
<td>Thermo-electric (on body sensor)</td>
<td>Change in body parameters;</td>
<td>Indicates probable change in other body parameters, advanced metering</td>
</tr>
<tr>
<td>Piezoelectric</td>
<td>Appliance usage; Movement on wheelchairs</td>
<td>Indicates life sign for elderly using wheelchairs; Also appliances with this harvesters detect usage patterns</td>
</tr>
<tr>
<td>Wireless switches</td>
<td>Lights ON/OFF</td>
<td>User location (range)</td>
</tr>
<tr>
<td>Shoe inserts</td>
<td>Movement</td>
<td>Life sign: Indicates energy spent and change in body parameters;</td>
</tr>
</tbody>
</table>
A. Framework

With our proposed context-event triggering system through energy harvesters, we notice that energy harvesters can directly provide high-level contextual information. At a basic level, the energy harvesters replace the batteries in WSNs. Therefore, they act as any other sensor node in collecting contextual data. For example, a light sensor can be powered through a PV harvester. Context Reasoner has the responsibility of inferring high-level context from the sensor data. For example, consider the case of a user walking into his bedroom and turning on the light. In classical approach, WSNs periodically send all the luminosity values to the sink. At the point where luminosity values jump, the reasoner determines the high-level context that the user walked into the bedroom at that instant. In our proposed method, when the PV harvester generates more energy, the sensor node concludes that a light is “on” in the bedroom. The sensor can then directly report the reasoned context to the sink. Thus, the reasoner is not required to collect and process huge amounts of data. The context information generated by the harvester can then be sent to the Context Modeler. This calls for a cross layer design as compared to the traditional framework. Figure 3a, shows framework adapted for the context-event triggered systems.

B. Adapted Smart-M3 Architecture

In our framework, we adapt the Smart-M3 [7] architecture that was proposed for semantic information interoperability. Smart-M3 (Multi part, Multi device and Multi vendor) consists of two important entities namely Knowledge Processors (KPs) and Semantic Information Brokers (SIB). KPs are entities that either produce or
consume information. SIB is an entity that maintains a high-level contextual information. There can be more than one SIB, where information is distributed among various SIBs. KPs communicate with the SIBs using access methods that are defined by the Smart Space Access Protocol (SSAP). SSAP includes access methods for various communication technologies such as Wi-Fi, Bluetooth, Zigbee, NFC, etc. SSAP provides a set of primitives that enable KPs to join a SIB, leave a SIB and to access the information (insert, retrieve, or query) from the SIB.

Typically with Smart-M3 architecture for context aware applications, the KPs reside in the sink node. The KPs perform the interpretation and reasoning based on the aggregated sensor data. The SIBs store the high-level contextual information. In our adapted Smart-M3 architecture, nodes with energy harvesters that directly generate high-level contextual information can themselves act as KPs. Therefore, this information is directly sent to SIBs as shown in Figure 3b. Applications/services subscribe to KPs to get notified when there is a change in data produced. Through this subscription, other sensors in the ambiance can be triggered to monitor the changes in context. Consequently, SIBs are updated and applications in that space adapt based on this new information.

V. USE-CASE: INDOOR SCY-PHY SPACES

In this section, we describe a simple use-case where we demonstrate how our proposed method and framework can be employed in real-life scenarios. We then show the benefits in terms of energy savings and data processing of our proposal.

Bob is an early adopter of SCy-Phy spaces. In his house, he has a fitness room for physical exercise activities. He has converted his fitness room into a SCy-Phy space. This room is equipped with wireless switches, motion, temperature, humidity, and light sensors and an Internet access point that also acts as sink to the wireless sensors. He bought a wireless pulse rate monitoring device that can be worn on his wrist, and a shoe. All the wireless devices, except the pulse rate monitoring device, are equipped with suitable energy harvesters. The pulse rate monitor is battery operated. The shoe has a shoe insert energy harvester and the wireless switch has a linear motion harvester. The motion, temperature, humidity and light sensors have PV harvester equipped as the energy source.

Consider the following scenario: Bob enters his fitness room and presses the light switch. Immediately, the wireless switch harvests energy and sends a notification to the sink, which then turns “on” the light. The sink also notes down that Bob is in the room, and the motion sensor is turned on. The change in light conditions triggers the temperature, humidity and light sensors’ PV harvester. They conclude a person’s presence in the ambiance and start recording values. Bob then wears his pulse rate monitor and the shoe. Since he likes springboard jumping, he begins his routine exercise of jumping. The moment he starts jumping, the shoe insert detects a significant change in harvested energy. It immediately notes that Bob is performing a physical activity and sends this contextual information to the sink. The shoe needs to trigger body sensors to monitor the changes. Thus, it broadcasts a notification to body sensors indicating that they should start monitoring at higher sensing frequency. In this case, the pulse rate monitor picks up this message and then it begins noting his heart-beat rate. At the end of the exercise, the shoe again detects the change in Bob’s activity and thus notifies the sink.

It also notifies the body sensors, here the pulse rate monitor, to switch off.
We compare our method to the classical approach and constant sensing approach for this scenario. In our approach, the motion sensor, after being turned on, samples every 30 s. In classical approach, the sensor periodically measures the data and sends them to the sink irrespective of any activity performed. For this approach, we assume that the motion sensor measures every 5 s to detect the entering of the room activity. In constant sensing approach, the sensing frequency of all the sensors is 1 s, and this data is sent to the sink. The pulse rate monitor senses at the rate of 1 s for all the approaches considered.

We classify Bob’s activities into two: (a) detecting presence of Bob in the fitness room, and (b) his pulse rate monitoring. We performed a simulation by considering the described use-case. We assume that Bob performed the above activities at random times during 24 hours. For the sake of simplicity, we neglect the time of the day implications in the scenario. We use energy consumption values for various sensors in this use-case from [11], [12].

Figure 4a shows the energy consumption of the sensors. As evident from the figure, our proposed method consumes lesser energy for detecting the contexts. The localization event detection in our method takes 61.73% lesser energy than the classical approach. In this use-case both the classical and constant approaches consume same amount of energy for heart rate monitoring. Compared to those approaches, the proposed method consumes 68.95% lesser energy. Note that the energy harvesting is not considered in the above comparisons of energy consumption.

Figure 4b shows the energy consumption for pulse rate monitoring in classical and our proposed approach. The plot is for a random 60 min. of Bob’s activities. In the plot, we see flat portions and positive slope portions in the energy consumption by our approach. The flat portions indicate that Bob is stationary. The positive slope portions indicate that Bob is exercising and his pulse rate monitor is “on”. As expected energy consumption by our approach is much lesser than the classical approach, since the pulse rate monitor is turned “off” during Bob’s inactivity.

The number of data packets generated in all approaches is shown in Figure 4c. As expected, the number of packets in our approach is significantly lesser than the other approaches for both the activities.

VI. CHALLENGES

As demonstrated in the previous section, our proposed method can detect and notify the context instead of raw sensor data in the classical approach. This saves significant amount of energy. Moreover, a distributed
context aware application can be designed by employing our method. However, there are a few challenges that need to be addressed:

- **Quality of contextual data:** In the classical approach, the sensors can provide a fine-grained data on the user’s activity. However, in our approach we need to design smart applications [13] that try to match the requirements. In applications where fine-grained activity is critically required, for example in ambient assisted living for the elderly, context triggered sensing needs to be used in conjunction to the classical approach.

- **Detection of events with harvesters:** The detection of events in our approach is highly dependent on the sensitivity of the harvesters to the energy sources. In current harvesting systems, the sensitivity is quite low. For example, solar panels cannot detect minor changes in illumination, especially when the panel is exposed to sunlight. Similarly, other harvesters also have a tipping point before which no energy is harvested. Making the harvesters to detect the events robustly is an important challenge. With rapid development in harvesting technology, this problem can be addressed.

- **Reliability of detection in real-time:** Since all the nodes are run by harvested energy, some nodes may be in sleep state. Hence, making the system reliable enough to transfer the context-event in real-time to the sink is a major challenge in EH-WSNs.

- **Density of sensors:** From the above challenges, we note that reliability needs to be guaranteed in such systems. Since energy harvesting is not guaranteed to provide “enough” power always, the density of such nodes need to be estimated correctly to support reliable context-event detection. Generalizing density estimation for many scenarios is a hard problem.

- **Distributed architecture:** Having a distributed architecture facilitates the nodes, especially with our proposed method, to take distributed actions for context aware adaptation of the environment. This makes our system scalable.

- **Learning over time:** It is possible that a context change occurs due to more than one reason. For example, a PV harvester next to a window will trigger when sufficient sun-light falls on it. The same PV harvester will also trigger a context event when a user switches on the light in the room. Typically, in case of such ambiguity in context, the nodes are configured to report the event to sink. The sink queries other sensors and derives the actual context. However, it is required that the nodes can ‘learn’ over time to resolve such ambiguities in order to reduce latency and help in realizing a real-time system.

There is one drawback in the proposed approach. Not every physical parameter change can be context triggered through a harvester. For example, there is no harvester that can trigger an event due to a change in CO$_2$ concentration levels. Another example is that an accelerometer sensor can be used to get the orientation of the device. Unfortunately, this change cannot be used to harvest energy, hence this event cannot be captured through a harvester.

VII. Conclusions

Context awareness in applications is one of the most sought-after technologies with the growth of Internet of Things and Smart Cyber Physical systems. With the current technology for context-event detection, the sensors need to report their measured values periodically. However, such a system is not scalable due to the
facts that sensors generate huge data and periodic data transmissions in sensors drain their battery. Ambient energy harvesting mechanisms can be exploited to address both the issues together. We proposed to exploit the harvesters to detect contextual changes in SCy-Phy spaces, and act as context-event triggers. Therefore, both data processing and energy consumption are reduced. We also adapt the context-aware framework and Smart-M3 architecture for our proposed method. We demonstrated the usefulness of our system with a real-world use-case and compared our proposal with the current approach. With advancements in harvesting technologies, the event detection can be made robust. We believe that using harvesters as context-event triggers is the approach for designing a truly distributed context-aware application in Smart Cyber Physical systems. In this space there are abundant opportunities to bring in innovation in many ways. We listed some important challenges, which are only the tip of an iceberg. This article provides only the beginning of a new inter-disciplinary research, which is highly ambitious.

ACKNOWLEDGMENT

We thank Go-Green project. This article describes work partially undertaken in the context of the Go-Green project (http://gogreen-project.nl/). Go-Green is sponsored by the Dutch Ministry of Economic Affairs, Agriculture and Innovation.

We also thank iCore project. This article describes work undertaken in the context of the iCore project, Internet Connected Objects for Reconfigurable Ecosystems (http://www.iot-icore.eu/). iCore is an EU Integrated Project funded within the European 7th Framework Programme, contract number: 287708. The contents of this publication are the sole responsibility of iCore project and can in no way be taken to reflect the views of the European Union.

REFERENCES

